Foundations of Discrete Mathematics COT 2104

Practice 3

1. Use set builder notation to give a description of each of these sets.
a. $\{0,3,6,9,12\}$
b. $\{-3,-2,-1,0,1,2,3\}$
c. $\{\mathrm{m} . \mathrm{n}, \mathrm{o}, \mathrm{p}\}$
2. Suppose that $A=\{2,4,6\}, B=(2,6\}, C=\{4,6\}$, and $D=\{4,6,8\}$. Determine which of these sets subsets of which other of these sets are.
3. Determine whether each of these statements is true or false.
a. $\{\varnothing\} \in\{\varnothing\}$
b. $\{\varnothing\} \in\{\{\varnothing\}\}$
c. $\{\{\varnothing\}\} \subseteq\{\varnothing,\{\varnothing\}\}$
4. Use a Venn diagram to illustrate the relationship $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}$.
5. Find two sets A and b such that $\mathrm{A} \in \mathrm{B}$ and $\mathrm{A} \subseteq \mathrm{B}$.
6. Find the cardinality of each of these sets.
a) \varnothing
b) $\{\varnothing\}$
c) $\{\varnothing,\{\varnothing\}$
d) $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$
7. Determine whether each of these sets is the power set of a set.
a) \varnothing
b) $\{\varnothing,\{a\}\}$
c) $\{\varnothing,\{a\},\{\varnothing, a\}\}$
d) $\{\varnothing,\{a\},\{b\},\{a, b\}\}$
8. Let $A=\{a, b, c\}, B=\{x, y\}$. Find $A \times B$.
9. Show that $\mathrm{A} x \mathrm{~B} \neq \mathrm{B} \times \mathrm{A}$, when A and b are nonempty, unless $\mathrm{A}=\mathrm{B}$.
10. Translate each of these quantifications into English and determine its truth value.
a) $\exists x \in \mathbf{R}\left(x^{3}=-1\right)$.
b) $\exists x \in \mathbf{Z}(x+1>x)$.
c) $\exists x \in \mathbf{Z}(x-1 \in \mathbf{Z})$.
d) $\exists x \in \mathbf{Z}\left(x^{2} \in \mathbf{Z}\right)$.
11. Suppose that A is the set of sophomores at your school and B is the set of students in discrete mathematics at your school. Express each of these sets in terms of A and B.
a) The set of sophomores taking discrete mathematics in your school.
b) The set of sophomores at your school who are not taking discrete mathematics.
c) The set of students at your school who either are sophomores or are taking discrete mathematics.
d) The set of students at your school who either are not sophomores or are not taking discrete mathematics.
12. Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}\}$. Find
a) $A \cup B$
b) $A \cap B$
c) $A \backslash B$
d) $\mathrm{B} \backslash \mathrm{A}$
13. Let A be a set. Show that
a) $\mathrm{A} \cup \varnothing=\mathrm{A}$
b) $A \cap \varnothing=\varnothing$
c) $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$
d) $\mathrm{A} \backslash \varnothing=\mathrm{A}$
14. Let $A=\{0,2,4,6,8,10\}, B=\{0,1,2,3,4,5,6\}$, and $C=\{4,5,6,7,8,9,10\}$. Find
a) $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$
b) $(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{C}$
15. Let A and B be sets. Show that
a) $(A \cap B) \subseteq A$
b) $\mathrm{A} \backslash \mathrm{B} \subseteq \mathrm{A}$
16. Let A, B and C be sets. Show that
a) $(\mathrm{A} \cup \mathrm{B}) \subseteq(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$
b) $(A \backslash B) \backslash C \subseteq A \backslash C$
17. Find the symmetric difference of $\{1,3,5\}$ and $\{1,2,3\}$
18. Draw a Venn diagram for the symmetric difference of the sets A and B.
19. Show that $A \oplus B=(A \backslash B) \cup(B \backslash A)$
20. Determine, with reasons whether or not the following defines an equivalence relation on the set A.
a) A is the set of all lines in the plane; $\mathrm{a} \sim \mathrm{b}$ if and only if a is perpendicular to b .
